Login for faster access to the best deals. Click here if you don't have an account.

Swelling kinetic study of poly(methyl vinyl ether-co-maleic acid) hydrogels as vehicle candidates for drug delivery

2021-09-22 15:35   Үл хөдлөх зарна   Баян-Өлгий   5 views

-- ₮

  • img
Price: -- ₮

The worldwide production capacity of 1,4-bis(vinyloxy)-butane was estimated at 6,969,000 tonnes/year in 2007, with most capacity concentrated in the United States (1,585,000 all in Texas), China (1,261,000), Japan (725,000) and Taiwan (650,000).[4] The average list price for 2008 was $1600/tonne. Celanese is the largest producer (ca 25% of the worldwide capacity), while other significant producers include China Petrochemical Corporation (7%), Chang Chun Group (6%), and LyondellBasell (5%).[4]

 

It is a key ingredient in furniture glue.[5]

It can be polymerized to give polyvinyl acetate (PVA). With other monomers it can be used to prepare various copolymers such as ethylene-vinyl acetate (EVA), vinyl acetate-acrylic acid (VA/AA), polyvinyl chloride acetate (PVCA), and polyvinylpyrrolidone (Vp/Va copolymer, used in hair gels).[8] Due to the instability of the radical, attempts to control the polymerization by most "living/controlled" radical processes have proved problematic. However, RAFT (or more specifically, MADIX) polymerization offers a convenient method of controlling the synthesis of PVA by the addition of a xanthate or a dithiocarbamate chain transfer agent.

Vinyl acetate undergoes many of the reactions anticipated for an alkene and an ester. Bromine adds to give the dibromide. Hydrogen halides add to give 1-haloethyl acetates, which cannot be generated by other methods because of the non-availability of the corresponding halo-alcohols. Acetic acid adds in the presence of palladium catalysts to give ethylidene diacetate, CH3CH(OAc)2. It undergoes transesterification with a variety of carboxylic acids.[9] The alkene also undergoes Diels–Alder and 2+2 cycloadditions.

 

Tests suggest that vinyl acetate is of low toxicity. Oral LD50 for rats is 2920 mg/kg.[3]

 

On January 31, 2009, the Government of Canada's final assessment concluded that exposure to vinyl acetate is not harmful to human health.[12] This decision under the Canadian Environmental Protection Act (CEPA) was based on new information received during the public comment period, as well as more recent information from the risk assessment conducted by the European Union.

 

In the context of large-scale release into the environment, it is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), under which it "does not meet toxicity criteria[,] but because of its acute lethality, high production volume [or] known risk is considered a chemical of concern". By this law, it is subject to strict reporting requirements by facilities that produce, store, or use it in quantities greater than 1000 pounds.[13]

 

 

To date, methods of quantum-chemical calculations have been increasingly developed. As a result, it is possible to estimate the geometry of molecules, calculate the stability of intermediate products and transition states. In the experimental method of calculating such results for most reactions, along with a multi-stage process, there are difficulties associated with the appearance of intermediate stages and the presence of intermediate reaction products in an extremely small time.

 

Radical copolymerization of polyethylene glycol maleate with Di(ethylene Glycol) monovinyl ether of monoethanol amine has been performed for the first time. Radical co- and terpolymerization of the systems polyethylene glycol maleate with acrylamide and 1,4-butanediol monovinyl ether of monoethanol amine has been studied. Molecular weight of polyethylene glycol maleate has been determined using light scattering and gel permeation chromatography. The compositions of the polymers and copolymerization constants of the studied systems have been determined. The composition of the copolymers has been found using gas chromatography. Kinetic curves show that with increasing molar fraction of acrylamide in the solution the reaction rate and swelling capacity of the copolymers increase. It has been shown that the composition of terpolymers determined experimentally differs considerably from the one calculated taking into account obtained constants of copolymerization. Deviations found are due to various intermolecular interactions in these systems. The possibility of controlling the properties of network copolymers of polyethylene glycol maleate by changing external factors has been studied. Swelling capacity of the copolymers investigated was studied using gravimetric method.

Hydrogels have been widely used for various biomedical and pharmaceutical applications due to their biocompatibility, high water content and rubbery nature, which resemble natural tissue. Polyethylene glycol (PEG) crosslinked poly(methyl diethylene glycol monovinyl ether and maleic acid) (PMVE/MA) hydrogel is widely studied as a vehicle for various types of drug delivery. It has been reported that swelling and diffusion property of hydrogel are important features for their effectiveness. Higher swelling of PMVE/MA hydrogel facilitates greater amount of drug to be delivered. However, delivery of high molecular weight drugs such as ovalbumin and bevacizumab is still a challenge with existing formulation of PMVE/MA hydrogels. This study aims to optimise PMVE/MA hydrogel formulations and determine the swelling kinetics of different hydrogel formulations.

 

Нэмэлт мэдээлэл

Хэмжээ dsf
Өрөө 1