Login for faster access to the best deals. Click here if you don't have an account.

Stress Distribution at the Fillet of an Internal Flange

2021-08-24 16:23   Үл хөдлөх зарна   Баян-Өлгий   7 views

-- ₮

  • img
Price: -- ₮

This paper deals with the determination of the stress distribution at the fillet of a ANSI B16.5 flanges attached internally to a hollow cylinder. A load parallel to the axis of the cylinder and of variable eccentricity acts on a bearing plate which rests on the flange. The strains are measured by means of electrical resistance wire strain gages. The ratios of the mean cylinder diameter to the cylinder wall thickness and of the mean cylinder diameter to the flange thickness are varied. The principal stresses at the fillet are given as functions of these parameters. The experimental results are compared with the stresses calculated on the basis of an approximate theoretical solution for both an axial and an eccentric load.

Abstract Joining of steel pipes and pipe flanges use today the conventional method of fusion welding, where the flange is girth-welded onto the pipe. However, fusion welding of flanges to pipes is associated with many disadvantages such as the final quality of the weld, degradation of the mechanical properties of the base pipe near the heat affected zone, defects and cracks appearing in the weld, misalignments, to mention a few. The current study proposes a novel pipe-flange connection to replace the fusion welding process of steel pipes with a method based on cold working. The method is based on that the steel pipe is inserted into the neck of the flange, in which two circumferential grooves are manufactured. An expansion tool having two teeth is entered from the open side of the connection and is expanded hydraulically such that the teeth deform the pipe and cold work it plastically into the grooves. This will provide a strong joint between the flange and pipe. In this study the performance of the connection is maximized by optimizing the design of the flange and the expansion tool.

The use of bolted flange connections in the offshore wind industry has steeply risen in the last few years. This trend is because of failings observed in other modes of joints such as grouted joints, coupled with enormous economic losses associated with such failures. As many aspects of bolted flange connections for the offshore wind industry are yet to be understood in full, the current study undertakes a comprehensive review of the lessons learned about bolted connections from a range of industries such as nuclear, aerospace, and onshore wind for application in offshore wind industry. Subsequently, the collected information could be used to effectively address and investigate ways to improve bolted flange connections in the offshore wind industry. As monopiles constitute an overwhelming majority of foundation types used in the current offshore wind market, this work focusses on large ANSI welding neck flanges in the primary load path of a wind turbine foundation, such as those typically found at the base of turbine towers, or at monopile to transition piece connections. Finally, a summary of issues associated with flanges as well as bolted connections is provided, and insights are recommended on the direction to be followed to address these concerns.

As per recent reports, the offshore wind sector could bring in £17.5 bn investment to the U.K. economy over the next few years after faster than expected cost-cutting slashed subsidies for the technology by half [1]. On top of that, the baseline scenario for the United Kingdom’s installations by the end of 2030 is to reach the capacity levels of 40 GW, four times the current state [2]. Additionally, the target of £100 per MWh set for the year 2020 regarding the levelised cost of energy (LCOE) of offshore wind was achieved in U.K. projects four years earlier in 2016 [3]. The above figures reinforce the need for new technological developments that will enable the utilisation of larger and more efficient offshore wind turbines (OWTs). In this direction, one of the most important concerns is the support structure of the turbine’s tower, which requires further study concerning not only the feasibility of future installations, but also current problems that need to be better understood and addressed.

Нэмэлт мэдээлэл

Хэмжээ df
Өрөө 1